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Use of Parents, Sibs, and Unrelated Controls for Detection of Associations
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Summary

Detecting the association between genetic markers and
complex diseases can be a critical first step toward iden-
tification of the genetic basis of disease. Misleading as-
sociations can be avoided by choosing as controls the
parents of diseased cases, but the availability of parents
often limits this design to early-onset disease. Alterna-
tively, sib controls offer a valid design. A general mul-
tivariate score statistic is presented, to detect the asso-
ciation between a multiallelic genetic marker locus and
affection status; this general approach is applicable to
designs that use parents as controls, sibs as controls, or
even unrelated controls whose genotypes do not fit
Hardy-Weinberg proportions or that pool any combi-
nation of these different designs. The benefit of this mul-
tivariate score statistic is that it will tend to be the most
powerful method when multiple marker alleles are as-
sociated with affection status. To plan these types of
studies, we present methods to compute sample size and
power, allowing for varying sibship sizes, ascertainment
criteria, and genetic models of risk. The results indicate
that sib controls have less power than parental controls
and that the power of sib controls can be increased by
increasing either the number of affected sibs per sibship
or the number of unaffected control sibs. The sample-
size results indicate that the use of sib controls to test
for associations, by use of either a single-marker locus
or a genomewide screen, will be feasible for markers
that have a dominant effect and for common alleles hav-
ing a recessive effect. The results presented will be useful
for investigators planning studies using sibs as controls.
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Introduction

Detecting the association between genetic markers and
complex diseases can be a critical first step toward iden-
tification of the genetic basis of disease. Associations can
result from genetic linkage and/or linkage disequilib-
rium. Genetic linkage between disease and marker loci
causes the marker alleles to be associated with disease
within families (i.e., cosegregation). Linkage disequilib-
rium implies that the occurrence of particular haplo-
types, composed of specific alleles at the disease and
marker loci, produces disease-marker associations be-
tween families (i.e., at the population level). In family
studies, allowing for linkage disequilibrium in linkage
analyses can increase the power to detect causative genes
(Clerget-Darpoux et al. 1986). Traditionally, case-con-
trol studies have been used to study associations at the
population level. However, case-control studies with un-
related controls can be prone to biases due to population
stratification. Sampling the parents of diseased cases as
controls has proved to be a powerful design (Spielman
et al. 1993; Risch and Merikangas 1996) that detects
true genetic associations—that is, those that are caused
by both linkage and linkage disequilibrium of the disease
and marker loci. Note that parents are not used as con-
trols in the traditional manner but, rather, to assess
whether their marker alleles are transmitted to their dis-
eased child according to Mendelian probabilities, with
any distortion suggesting genetic associations that are
due to both linkage and linkage disequilibrium. But the
utility of this design is limited to the availability of the
genetic markers for the parents. Unless DNA can be
extracted from archival specimens, this means that the
use of parents as controls will be limited to early-onset
diseases. On occasion, sibs can be used to infer the geno-
types of missing parents, but, because inference of the
missing parents’ genotypes depends on their genotypes
and on their offspring’s genotypes, this inference of miss-
ing data can lead to biased results (Curtis and Sham
1995; Curtis 1997). To adequately account for the miss-
ing parental genotypes, a model can be used (Schaid and
Li 1997), but this requires assumptions about the pop-
ulation, such as random mating of parents and a ho-
mogeneous population. These model-based approaches
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Table 1

Genotype Frequencies

AFFECTION

STATUS

FREQUENCY OF GENOTYPE

AA AB AC BB BC CC Total

Affected: �′xgi xgi1 xgi2 xgi3 xgi4 xgi5 xgi6
dNi

Unaffected: �′ygi ygi1 ygi2 ygi3 ygi4 ygi5 ygi6
cNi

Total �′tgi tgi1 tgi2 tgi3 tgi4 tgi5 tgi6 Ni

require further evaluations, because of the required
assumptions.

As an alternative to the use of parental controls, sib
controls can be used to avoid the biases that occur in a
stratified population, with the obvious advantage of the
availability of sibs, but not of parents, for diseases that
occur at older ages. Although for 140 years this type of
design has been considered as a valid way to avoid pop-
ulation stratification (Manuila 1958), only recently have
scientists explored the utility of the use of sib controls
(Curtis 1997; Ewens and Spielman 1997; Langefeld et
al. 1997; Monks et al. 1997; Spielman and Ewens 1998).
These scientists have tackled the analytic issues by using
seemingly different approaches. For example, Langefeld
et al. (1997) and Boehnke and Langefeld (1998) pro-
posed analytic methods when using only one discordant
(affected/unaffected) pair of sibs from each sibship and
proposed the use of simulations to compute a probability
value, because of the complexity of the dependencies
among the alleles within a sibship. Curtis (1997) pro-
posed a similar method of analysis, allowing for only
one affected subject per sibship and choosing as control
the unaffected sib whose genotype is maximally different
from that of the case. Spielman and Ewens (1998) pro-
posed a statistic that they called the “sib-TDT” (S-TDT),
which is based on the use of affected and unaffected sibs
within a sibship. This method is based on comparison
of the number of occurrences of a particular marker
allele among the diseased cases with its expected value
when there is no association, with the variance taken
into account. The mean and variance are computed
within each sibship, on the basis of the hypergeometric
distribution. Monks et al. (1997) performed simulations
to evaluate the power of the S-TDT method for two
strategies when there are multiple marker alleles: (1) test
the association of each allele individually and correct for
the multiple tests by the Bonferroni correction and (2)
test all alleles simultaneously. Their simulation results
indicated that testing all alleles simultaneously can be
more powerful than testing each individually.

Although these novel designs and analytic methods
will prove useful, a general statistical method is needed
that allows for multiple marker alleles and combination
of different types of controls, such as cases and parental
controls with cases and sib controls and, perhaps, even
with cases and unrelated controls. For example, at times
it may be advantageous to sample unrelated controls, in
addition to sib or parental controls, to assess the poten-
tial impact of population stratification, and to pool when
this is deemed appropriate. We present a general score
statistic that allows pooling of different types of controls
and that is similar to some of the recently proposed
analytic methods. An important advantage of our pro-
posed methods of analysis is that they can be performed
by use of software that is available in most statistical-

analysis software packages. To plan these types of stud-
ies, we present methods to compute sample size and
power when sib controls, parental controls, and unre-
lated controls are sampled. These computations are then
used to contrast the power of using different types of
controls and different ascertainment schemes. Further
extensions are discussed, such as allowance for censored
data—which is particularly needed for complex diseases,
to control for the confounding effects of age—and in-
clusion of covariates.

Methods

Score Statistic for Sib Controls

Spielman and Ewens (1998) have presented a method
to compare the frequency of a particular marker allele
in affected versus unaffected sibs. Their method is im-
plicitly based on construction of a table for each2 # 3
sibship, in which the first row is for affected sibs, the
second row is for unaffected sibs, and the three columns
are for the three genotypes when there are two marker
alleles. The method that we propose for multiple marker
alleles is an extension of this approach.

To define notation and the general setup for this meth-
odology, we first consider the comparison of genotype
frequencies in affected versus unaffected sibs and then
consider the comparison of allele frequencies. Let Ns

denote the total number of sibships, such that each sib-
ship has at least one affected and at least one unaffected
sib. Let G denote the number of observed genotypes
among all subjects in the total sample, and let K denote
the number of alleles. For each sibship, create a 2 #

table in which the first row is the count of genotypesG
for the affected sibs, denoted as vector xgi for the ith
sibship, and in which the second row is the count of
genotypes for the unaffected sibs, denoted as vector ygi

; the subscript g is used to indicate reference to genotypes
(we shall later use subscript a to refer to alleles). An
example table for three alleles and six genotypes2 # 6
is given in table 1. The marginal row totals for the ith
sibship are the numbers of affected ( ) and unaffecteddNi

( ) sibs, with a total of Ni sibs in the ith sibship. ThecNi

marginal column totals of the genotype counts is the
vector . Under the null hypothesis of not � x � ygi gi gi
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association of the markers with affection status, and
conditional on the marginal totals, the table has2 # G
a hypergeometric distribution, which allows computa-
tion of the mean and covariance matrix for the vector
of genotype counts for the affected sibs, xgi. For the ith
sibship, the vector of expected counts of genotypes
among the affected sibs is , and the covar-de � t N /Ngi gi i i

iance matrix for the xgi vector is V � [diag(p ) �gi gi

, where , and diag(pgi) is a′ d cp p ]N N /(N � 1) p � t /Ngi gi i i i gi gi i

diagonal matrix with the elements of pgi running down
the diagonal and with the off-diagonal elements being
zero. The dimension of Vgi is . To compare theG # G
total observed genotype counts for the affected sibs
across all families, , with its expected valuex � Sxg• gi

when there is no association, , the followinge � Seg• gi

statistic can be used:

′ �S � (x � e ) V (x � e ) , (1)g g• g• g• g• g•

where the subscript dot indicates summation over all
sibships. Because genotype frequencies sum to one, Vg•

is not of full rank, so a generalized inverse, , is used.�Vg•

Alternatively, an arbitrary element can be eliminated
from the vector of differences, ( ), as can the cor-x � eg• g•

responding row and column of Vg•, and then these re-
duced vectors and inverted matrix can be substituted
into expression (1), to compute Sg. For large sample sizes,
Sg has an approximate x2 distribution with df.(G � 1)
Note that the statistic Sg is the stratified statistic that
Mantel and Haenszel (1959) proposed for case-control
studies, in order to adjust for a confounding factor by
stratification. In our application, the confounding factor
is the varying genotype frequencies from sibship to sib-
ship. This approach does assume that the strata (i.e.,
sibships) are independent of each other. When they are
not, such as when sibships originate from the same ped-
igree, this approach can still be motivated by considering
the conditional moments of the stratified tables as orig-
inating from the score statistic for a partial likelihood
(Cox 1975). The problem with this approach is that the
number of genotypes is often large, resulting in both a
large number of df and low power.

An alternative approach is to compare the observed
counts of alleles, not genotypes, with their expected val-
ues, as has been proposed by Spielman and Ewens
(1998). Because alleles are correlated among sibs, this
correlation must be taken into account. To do so, note
that allele counts are linear combinations of genotype
counts; it is easy to compute a covariance matrix for
linear combinations of random variables. To illustrate
the counting of alleles among affected sibs, note that the
count of the kth allele can be obtained by letting k/k
homozygotes contribute a count of 2, k/j heterozygotes
contribute a count of 1, and all other genotypes con-
tribute a count of 0. This can be represented in vector

notation, as b′
kxgi, where the jth element of the vector

bk has the value 2, 1, or 0, depending on whether the
corresponding jth genotype has 2, 1, or 0 alleles of type
k. After these bk vectors are bound into a matrix, ′B �

), where B has dimension , the vector(b ,b , ) ,b K # G1 2 K

of observed allele counts among the affected sibs in the
ith sibship can be represented as . Under thex � Bxai gi

null hypothesis, the vector of expected counts of alleles
is , and the covariance matrix of xai ise � Be V �ai gi ai

. A valid statistical comparison of the total ob-′BV Bgi

served allele counts among the diseased sibs across all
families, versus the total expected allele counts, can be
made with the multivariate statistic

′ �S � (x � e ) V (x � e ) , (2)sib a• a• a• a• a•

where, once again, the dot subscript indicates summa-
tion over all families. The statistic Ssib has an asymptotic
x2 distribution with, at most, ( ) df. It is worthwhileK � 1
to note that the Ssib statistic is the score statistic for a
conditional logistic regression model with stratification
on sibships. That is, the genotypes of subjects are coded
into a genotype covariate vector that has length (K �
) and elements of 0, 1, or 2, which are simply counts1

of the number of alleles of each type that a person pos-
sesses; one of the K alleles is arbitrarily chosen as a
baseline allele for computation of relative risks and
hence is ignored in this covariate vector. After the strata
for sibships have been set up and the covariate vectors
have been created, standard software for conditional lo-
gistic regression can be used to calculate the score sta-
tistics for association. This type of coding forces additive
effects of alleles onto the log odds ratio. The advantage
of using the score statistic is that it can be rapidly com-
puted, which is appealing when one is either calculating
simulated P values for small samples or evaluating many
marker loci. Alternatively, the likelihood ratio statistic
could be used. When sib controls are used, it may be
particularly important to control for known environ-
mental risk factors, by including them within the re-
gression model. This also allows evaluation of interac-
tion between environmental risk factors and genetic
markers, on the relative risk of disease.

The Ssib statistic in expression (2) is a generalization
of the Z statistic, called “S-TDT,” which has been pro-
posed by Spielman and Ewens (1998) for the case of

alleles. Spielman and Ewens have suggested that,K � 2
when there are more than two alleles, a Z statistic be
computed for each of the K alleles, with each Z having
an approximate standard normal distribution, and that
the maximum of these K statistics, Zmax, be used to per-
form a global test of association. The Bonferroni cor-
rection is needed when Zmax is used. In fact, the terms
used in expression (2) can be used to compute the Z
values. For the kth allele, the Z is Z � (x �k a•
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, where is the kth element of the�e ) / V (x � e )a• k a•kk a• a• k

vector of differences and Va•kk is the kth diagonal element
from the covariance matrix. Hence, by computation of
the multivariate statistic in expression (2), the elements
are also available for computation of the statistic Zmax.
The statistic Zmax is likely to be more powerful than the
multivariate statistic Ssib, when a single marker allele is
associated with disease. However, if multiple alleles are
associated with disease, as is expected when linkage dis-
equilibrium is not complete, the approach using Zmax can
have less power than the multivariate statistic (Schaid
1996).

The statistic Ssib in expression (2) is also similar to the
approach given by Boehnke and Langefeld (1998), who
proposed that, when there is a single discordant pair per
sibship, the statistic , beK d c 2 d cAC � S (n � n ) /(n � n )2 k�1 k k k k

used, where is the count, across all sibships, of thednk

kth marker allele among cases and where is thatcnk

among controls, with the rule that only those marker
alleles that differ within a discordant sib pair contribute
to these counts. It can be shown that the kth element of
the vector of differences, , is equal to d(x � e ) (n �a• a• k k

. If Va• in expression (2) were replaced by a matrixcn )/2k

having diagonal elements and off-diagonald c(n � n )/4k k

elements 0, then the statistics Ssib and AC2 would be
equivalent. Boehnke and Langefeld (1998) have pro-
posed that P values for the AC2 statistic be computed
by simulations, because the AC2 statistic does not ac-
count for covariances of alleles among sibs. Our pro-
posed statistic in expression (2) considers the same con-
trasts as are evaluated by the AC2 statistic yet
appropriately accounts for covariances, thereby elimi-
nating the need for simulations.

Score Statistic for Parental Controls

Schaid (1996) showed that, when trios (a case and
parental controls) are used, a score statistic can be used
to test for disease-marker associations. The parents are
used as controls, but only to assess the status of trans-
mission of each of their alleles to their affected child.
The form of the score statistic is similar to that for the
sib controls. For a given trio, denote the two alleles of
the mother as “m1” and “m2,” the two alleles of the
father as “f1” and “f2,” and the genotype of the case
(affected child) as “ .” The genotypes of the potentialdgi

offspring that these parents can produce are in the set
; one of these four genotypesG � {m f ,m f ,m f ,m f }i 1 1 1 2 2 1 2 2

corresponds to the case’s genotype, , and the otherdgi

three can be considered pseudo–sib controls (Self et al.
1991). Let the vector xai denote the observedK # 1
count of each of the K alleles in the case’s genotype,

. The vector of expected allele counts under the nulldgi

hypothesis is , where is the average over the four¯ ¯x xai ai

x-coded genotypes in the set Gi. The covariance matrix

of the xai vector, Vai, is the covariance matrix of the four
x-coded vectors in the set Gi. With this notation and
computation of xai, , and Vai for each trio stratum,x̄ai

the score statistic for parental controls is S � (x �par a•

, where the dot notation indicates sum-′ �¯ ¯x ) V (x � x )a• a• a• a•

mation over all trio strata. The Spar score statistic has an
asymptotic x2 distribution with, at most, ( ) df.K � 1
Note that the score statistic for parental controls, Spar,
is the same as a score statistic for conditional logistic
regression. In this case, each trio is a stratum, and within
each stratum is the case and the three pseudo–sib con-
trols; if there are multiple affected sibs, then each af-
fected sib would have its own stratum, requiring repli-
cation of parental genotypes, to create the pseudo–sib
controls. Then, the genotypes of the case and its
pseudo–sib controls can be coded in the manner outlined
for sib controls. In contrast to the situation with sib
controls, the main effects of environmental risk factors
cannot be evaluated when parental controls are used;
only interaction between the environmental risk factors
and the genetic markers can be assessed, such that the
marker-genotype relative risks vary according to the en-
vironmental risk factors (Self et al. 1991; Schaid 1995).

Score Statistic for Unrelated Controls

When cases and controls are not genetically related,
a common method to compare allele frequencies be-
tween cases and controls is to create a table of2 # K
allele counts for cases (row 1) and controls (row 2) and
then to compute Pearson’s x2 statistic. However, the va-
lidity of this method requires that alleles within geno-
types be statistically independent under the null hy-
pothesis. Departures from independence (i.e., departure
from Hardy-Weinberg genotype proportions) can lead
to inflated type I error rates (Schaid and Jacobsen 1998).
However, the method outlined above for computation
of the covariance matrix of allele counts for sib controls
can also be used to compute a covariance matrix for
unrelated controls that is robust to departures from
Hardy-Weinberg proportions (authors’ unpublished
data). In other words, with a single stratum for all un-
related cases and controls, create the table as in2 # G
table 1 and then compute the observed and expected
vectors of allele counts for diseased cases, the matrix of
covariances, and the x2 statistic, in the manner outlined
for sib controls. If there is a strong confounder (asso-
ciated with both disease and marker alleles), such as
ethnic background, then one can stratify on the con-
founder and then apply the statistical methods outlined
above (“Score Statistic for Sib Controls”).

Pooling across Different Control Groups

An appeal of the proposed x2 statistics is the ability
to pool data while adjusting for the types of controls
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used. The strategy is to first compute expectations and
covariances for each type of control used and then to
create a summary statistic across all strata. Because ex-
pectations and covariances are computed in a similar
manner for sib controls and unrelated controls, we only
need to expand on the similarities of the sib-controls
and parental-controls statistics, to illustrate appropriate
methods to pool the data. Consider parental controls.
For an affected child in the ith trio, create a G # 1
vector, denoted xgi, that indicates which genotype the
case possesses (i.e., elements of xgi are 0 or 1); this xgi

vector is similar to the first row of table 1. In fact, mul-
tiple affected sibs can be included ( ), such that xgi

dN 1 1i

is a vector of genotype counts among all sibs. UnderdNi

the null hypothesis, all of the genotypes in the set Gi

have equal probabilities, (i.e., Mendelian probabili-1
4

ties). Indistinguishable genotypes in the set Gi can be
collapsed, and their probabilities can be summed, to
compute the probabilities of the different genotypes as
arranged for the xgi vector (see column heading of table
1). Let pgi denote the vector of these conditionalG # 1
(on parental genotypes) probabilities. Then the expected
value of xgi under the null hypothesis is , anddm � N pgi i gi

the multinomial covariance matrix of xgi is V �gi

. Now, when the matrix B is used tod ′N [diag(p ) � p p ]i gi gi gi

transform the data from genotype counts to allele
counts, the vector of observed allele counts among af-
fected cases is , the vector of expected allelex � Bxai gi

counts is , and the covariance matrix of xai isx̄ � Bmai gi

. Note that this covariance matrix is identical′V � BV Bai gi

to simple computation of the covariance matrix of the
four x-coded vectors within the set Gi; but this latter
formulation illustrates that we are taking linear com-
binations of genotype covariances, as we had done when
considering sib controls. The main distinction between
parental controls and sib controls is the vector pgi that
defines the joint distribution of genotypes within a stra-
tum; for parental controls, pgi is determined by Men-
delian probabilities, whereas, for sib controls, pgi is es-
timated on the basis of the distribution of genotypes
within a sibship.

Now, suppose that there are Jpar strata for parental
controls, Jsib strata for sib controls, and Junr strata for
unrelated controls, giving a total of J � J � J � Jpar sib unr

strata. For each stratum, compute the vector of allele
counts for the cases, xai, as well as its expected value,
eai, and the covariance matrix for these allele counts, Vai,
where expectations and covariances depend on the type
of controls, as outlined above. Then, with use of the dot
notation to indicate summation over all J strata, the
pooled x2 statistic takes the same form as that used for
sib controls and parental controls, S � (x �pool a•

. Alternatively, one could use the ele-′ �e ) V (x � e )a• a• a• a•

ments of and the diagonal elements from Va•(x � e )a• a•

to compute univariate standard normal Z statistics and

then use the maximum of these, Zmax, as a global test of
association, again using the Bonferroni correction.

Sample Size and Power

For a given alternative hypothesis and a large sample
size, each of the score statistics for parental, sib, and
unrelated controls is distributed as a noncentral x2 dis-
tribution with a noncentrality parameter that depends
on the marker-allele frequencies and the genotype rel-
ative risks. Details for parental controls are presented
by Schaid (1996). For practical planning of a study, it
is simplest to consider sample size and power calcula-
tions when there are only two marker alleles: A, the high-
risk allele, and B, the low-risk allele. Let p and q �

denote the frequencies of alleles A and B, respec-1 � p
tively. Under the assumption of Hardy-Weinberg equi-
librium, the genotype probabilities are ,2P(AA) � p

, and .2P(AB) � 2pq P(BB) � q
We consider power as it depends on the marker-ge-

notype relative risks, because these parameters sum-
marize the associations between the marker genotypes
and affection status. However, even though we refer to
dominant, recessive, or other patterns of marker-geno-
type relative risks, it is important to recognize that these
relative risks are only for the marker genotypes and will
not necessarily correspond to the relative risks for the
disease-causing genotypes—unless the marker is a caus-
ative gene. The magnitudes of the marker-genotype
relative risks depend on the frequencies of the disease-
causing allele(s), the strength of linkage disequilibrium
between the disease and marker loci, and the relative
risks for the disease-causing genotypes (Schaid 1996).
Incomplete linkage disequilibrium will cause the marker-
genotype relative risks to be less than the disease-causing
genotype relative risks. To write the penetrances as func-
tions of relative risks, let the genotype BB be the baseline
genotype (i.e., that having relative risk ) and letr � 1BB

rAA and rAB denote the genotype relative risks for the
genotypes AA and AB, respectively. If fg is the penetrance
for genotype g, then the penetrances can be written as

and .f � r f f � r fAA AA BB AB AB BB

Sib controls.—When sib controls are used, sample size
and power will depend on the number of affected (Nd)
and unaffected (Nc) sibs per sibship ( ). Thed cN � N � N
power calculations that have been given by Spielman
and Ewens (1998), are useful for evaluation of the rel-
ative power of parental controls versus sib controls, but
only for particular genotype configurations. When plan-
ning a study, we must take into account that the ge-
notype configurations in a nuclear family will depend
on the genetic parameters, such as marker-allele fre-
quencies and marker-genotype relative risks. So, instead
of the conditioning on the marginal totals of each strat-
ified table, as is done in the computation of the score
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statistics, these marginal totals are considered as random
variables, because they are not known prior to sampling.
This variation is taken into account to compute the
power for sib controls, as outlined by the methods in
Appendix A.

Parental controls.—Methods to compute sample size
and power for the TDT method have been given, by
Risch and Merikangas (1996), for multiplicative relative
risks: . They also considered sampling either one2r � rAA AB

or two affected sibs per sibship and have pointed out
that it is more powerful to sample two, instead of one,
affected sibs per sibship, because this increases the
chance that at least one of the parents will be hetero-
zygous for the marker alleles and, hence, informative for
determination of transmission status. Schaid (1998) has
derived methods to determine sample size and power of
the TDT method for general genotype relative risks and
has shown that, when marker alleles are common—and
when multiplicative genotype relative risks are assumed
when, in fact, the true pattern of relative risks is additive
(i.e., ), dominant (i.e., ) or recessiver � 2r � 1 r � rAA AB AA AB

( )—the required sample size for the TDT statisticr � 1AB

can be grossly underestimated. However, the calcula-
tions by Schaid (1998) were for affected childdN � 1
per sibship. In Appendix B we extend these ideas to
allow for an arbitrary number of affected sibs ( dN x

) when computing power.1
Unrelated controls.—To compute power for unrelated

controls, we need to specify the marker-allele frequen-
cies, the marker-genotype relative risks, and the lifetime
risk of disease, denoted as “Pd;” in this case, the baseline
penetrance, fBB, can be calculated, on the basis of the
genetic relative risks, allele frequencies, and Pd, as

. Also, both the total num-2 2f � P /(p r � 2pqr � q )BB d AA AB

ber of cases and the ratio of controls to cases, denoted
as “Rc,” are specified. With these parameters, power can
be calculated, as detailed in Appendix C.

Power comparisons.—The power of the parental-,
sib-, and unrelated-controls designs were compared, to
evaluate how well sib controls perform relative to these
other designs. To do so, power was computed for sam-
pling of 100 nuclear families, with a population lifetime
risk of disease, , and by a two-sided statisticalP � .05d

test having a type I error rate of 5% (i.e., ).Z � 1.96a

Two marker alleles were assumed, such that the high-
risk allele was either rare ( ) or common (p � .01 p �

). The genetic models considered were those for dom-.2
inant ( ) and recessive ( ) effects; rare re-r � r r � 1AA AB AB

cessive effects are not presented because all designs had
weak power to detect these. We also considered the in-
fluence of the size of the sibship, N, on power, allowing
N to be 2–4. For both parental- and sib-control designs,
each sibship must have at least one affected sib ( dN x

), in order to be informative. In contrast, the sib-control1
design is not informative when all sibs are affected

( ), whereas this type of sibship is highly infor-dN � N
mative for the parental-control design. But, to fairly
compare the power of these two types of designs, we
allowed Nd to vary from a minimum ascertainment cri-
terion (either one or two affected sibs) to a maximum
value of , so that each sibship has at least oneN � 1
unaffected sib. In practice, including sibships with all
sibs affected can dramatically increase the power for the
parental controls.

The power for unrelated controls requires that we fix
the number of affected and unaffected subjects. To con-
trast the power for unrelated controls versus that for
either parental or sib controls, we fixed the number of
affected cases for the unrelated-controls design to be the
same as the expected number of affected sibs in the total
sample of 100 nuclear families, that was used for the
parental- and sib-control designs. This expected number
of affected sibs, which depends on the sibship size, the
marker-allele frequency and genotype relative risks, the
ascertainment criteria, and the population risk of dis-
ease, was computed by consideration of the probabilities
of all possible tables (see expressions [A1] and [A2] in
Appendix A) and the number of affected sibs per table.
The number of unrelated controls was set equal to the
number of affected cases. We chose this 1:1 ratio because
it is commonly chosen in practice and because it sim-
plified the comparison of power. Technically, it would
be more accurate to allow the ratio of controls per case,
Rc, to vary according to the sib-control design. But this
made some power comparisons potentially misleading.
For example, a design with two affected sibs and one
unaffected sib would lead to a choice of unre-R � .5c

lated controls per case, a design rarely used. So our
power comparisons reflect the power for sampling strat-
egies that are straightforward to employ, and they do
not necessarily reflect the relative efficiency, in terms of
their total sample size requirements, of different designs.

Results

The power for parental, sib, or unrelated controls, for
a rare dominant effect, is presented in figure 1, for two
ascertainment schemes: (1) sampling at least one affected
in sibships of size 2 (fig. 1A), size 3 (fig. 1B), or size 4
(fig. 1C) and (2) sampling at least two affecteds in sib-
ships of size 3 (fig. 1D) or size 4 (fig. 1E). These power
curves illustrate several key points. First, when the as-
certainment criterion is at least one affected (fig. 1A–C),
unrelated controls and parental controls have similar
power, which is greater than that for sib controls. Sec-
ond, there is a gain in power for sib controls as the
sibship size increases from two sibs (fig. 1A) to three
sibs (fig. 1B) to four sibs (fig. 1C). This is essentially due
to the increase in the number of controls per sibship,



Figure 1 Power to detect associations with a rare ( ) marker allele having dominant effects, when parental controls from 100p � .01
nuclear families, sib controls from 100 nuclear families, and 100 unrelated controls are used. Ascertainment criteria are as follows: at least one
affected sib in sibships of size 2 (A), size 3 (B), or size 4 (C) or at least two affected sibs in sibships of size 3 (D) or size 4 (E).
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with little increase in the number of affecteds per sibship.
For example, for a relative risk of 4, the frequency of
more than one affected sib per sibship increased from
3%, for a sibship size of 2, to 8%, for a sibship of size
4. Third, power is greater when the ascertainment cri-
terion is at least two affecteds per sibship (fig. 1D and
E), compared with that when there is at least one affected
per sibship (fig. 1B–C); again, sib controls had the least
amount of power, compared with parental controls and
unrelated controls. Interestingly, when at least two af-
fected sibs are required, the gain in power for parental
controls can be substantial, giving greater power than
that given by unrelated controls (fig. 1D and E). The
power increased for all three types of controls when the
frequency of the marker allele increased from .01 (fig.
1) to .20 (fig. 2), although, for this dominant effect, the
contrast in power for the three different types of controls
was qualitatively similar in figures 1 and 2.

The power for a common marker having a recessive
effect is illustrated in figure 3. When at least one affected
sib is required (fig. 3A–C), the power of parental controls
and unrelated controls is similar, and both of these de-
signs have greater power than does the sib-controls de-
sign. Increasing the number of sibs increases the power
of sib controls (fig. 3A–C). Notice, however, that, when
the ascertainment criterion increases from at least one
affected (fig. 3A–C) to at least two affected (fig. 3D and
E), there is a substantial gain in power for the parental-
controls design, so that this design has greater power
than either that for unrelated controls or that for sib
controls. This is similar to the power comparisons for
the rare dominant effect, portrayed in figure 1. That is,
both figures 1 and 3 highlight the fact that the parental-
controls design can, by increasing the minimum number
of affected sibs per sibship, achieve a substantial gain in
power to detect a rare high-risk genotype.

The sample size and power for a study using sib con-
trols is determined by the difference between the ex-
pected count of A alleles among cases and that predicted
by the marginal genotype distribution among sibs (malt),
as well as by the SD of this measure, under the specified
alternative hypothesis (jalt); see expression (A5) in Ap-
pendix A. To facilitate sample-size and power compu-
tations when planning a study using sib controls, we
computed the values of malt and jalt, allowing sibship size
to vary. The negative binomial distribution was used to
predict the distribution of sibship size, with a mean of
2 and a variance of 4 (slightly less than the mean of 2.6
and variance of 5.1 that were reported, by Brass [1958],
for the United States population in 1950). For these com-
putations, at least one unaffected sib was required, as
well as either at least one affected sib (i.e., a truncated
distribution of sibship size 2–8), or at least two affected
sibs (i.e., a truncated distribution with sibship size 3–8).
The population lifetime risk of disease was assumed to

be 5%. The values of malt and jalt are presented in table
2, for a variety of genetic parameters related to a dom-
inant effect (i.e., ), and in table 3, for parametersr � rAA AB

related to a recessive effect (i.e., ). Also presentedr � 1AB

in tables 2 and 3 are the number of sibships required to
detect an association either when a single genetic marker
is evaluated or when a genomewide screen is performed,
both designs having 80% power. When evaluating a sin-
gle marker locus, we used a two-sided test having a type
I error of 5% (i.e., ). When performing a ge-Z � 1.96a

nomewide screen, we used the Bonferroni correction to
control the false-positive rate when evaluating multiple
marker loci (Risch and Merikangas 1996; Spielman and
Ewens 1998). We assumed that there were 500,000 in-
dependent tests (five variants in each of 100,000 genes;
Lander 1996), which required . Although thisZ � 5.33a

method will be adequate for independent tests of asso-
ciation, it will tend to be conservative when alleles from
different marker loci are in linkage disequilibrium, such
as when these loci are physically close. To illustrate how
to compute sample size, consider a single-locus test (re-
quiring ), with 80% power ( ) to de-Z � 1.96 Z � .84a b

tect a high-risk allele having population frequency p �
, and a dominant effect with . From the.1 r � r � 2AA AB

data in table 2, it can be inferred that, if at least one
affected sib is required, then andm � .04769 j �alt alt

. On the basis of expression (A5),.27254 N � (Z �s a

, resulting in 257 sibships required, such that2 2 2Z ) j /mb alt alt

each sibship has at least one affected and at least one
unaffected sib.

Tables 2 and 3 illustrate several key points regarding
sample-size requirements. The sample sizes required for
a genomewide screen are four to five times the sample
size required for a single-locus test. For a marker with
dominant genotype relative risks, sample sizes are likely
to be feasible for marker relative risks as low as 2—and
perhaps even lower, if the high-risk allele is common. In
contrast, for recessive effects, sample sizes are likely to
be feasible when the high-risk allele is not rare and the
genotype relative risk is large. For both dominant and
recessive effects, the number of sibships required can be
reduced by ascertainment of at least two affected sibs
per sibship, with the greatest reduction occurring when
the high-risk allele is rare. However, requiring a larger
number of affecteds per sibship increases both (a) the
size of each sibship if the presence of unaffected control
sibs is to be guaranteed and (b) the amount of effort
required to identify these perhaps unusual sibships.

Discussion

A general multivariate score statistic, Ssib, has been
presented in order to assess the association between a
multiallelic genetic-marker locus and affection status,
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Figure 2 Power to detect associations with a common ( ) marker allele having dominant effects, when parental controls from 100p � .20
nuclear families, sib controls from 100 nuclear families, and 100 unrelated controls are used. Ascertainment criteria/panel differentiation are
as in fig. 1.
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Figure 3 Power to detect associations with a common ( ) marker allele having recessive effects, when parental controls from 100p � .20
nuclear families, sib controls from 100 nuclear families, and 100 unrelated controls are used. Ascertainment criteria/panel differentiation are
as in fig. 1.
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Table 2

Number of Sibships Required to Have 80% Power, under the
Assumption of 5% False-Positive Rate, to Detect Association with a
Genetic Marker Having Autosomal Dominant Effects on Disease
Risk

p, ,r � rAA AB

AND min Nd a malt
b jalt

b

NO. OF SIBSHIPS

Single-Locus
Test

Genomewide
Screen

.01:
2:

1 .00671 .09787 1,669 8,098
2 .01395 .14482 846 4,104

4:
1 .01947 .12534 326 1,579
2 .05964 .23248 120 579

8:
1 .04308 .16844 121 583
2 .17635 .34886 31 150

.1:
2:

1 .04769 .27254 257 1,244
2 .08371 .37019 154 745

4:
1 .11019 .29990 59 283
2 .20649 .43029 35 166

8:
1 .17845 .31973 26 123
2 .31443 .45238 17 79

.2:
2:

1 .06598 .34249 212 1,027
2 .10297 .44233 145 703

4:
1 .13102 .35098 57 274
2 .19885 .46689 44 210

8:
1 .18341 .35227 29 141
2 .25930 .47359 27 128

a p � frequency of high-risk allele; min Nd � minimum no. of
affected sibs per sibship. denotes that these two values arer � rAA AB

assumed to be equal for a dominant model.
b Parameters used in expression (A5), to determine sample size.

Table 3

Number of Sibships Required to Have 80% Power, under the
Assumption of 5% False-Positive Rate, to Detect Association with a
Genetic Marker Having Autosomal Recessive Effects on Disease
Risk

p, ,rAA

AND min Nd

FREQUENCY OF NO. OF SIBSHIPS

malt jalt

Single-Locus
Test

Genomewide
Screen

.01:
2:

1 .00007 .08135 10,878,713 52,790,672
2 .00012 .09826 4,916,616 23,858,654

4:
1 .00021 .08202 1,229,407 5,965,891
2 .00051 .10057 302,786 1,469,315

8:
1 .00048 .08350 234,192 1,136,452
2 .00181 .10821 28,169 136,693

.1:
2:

1 .00622 .25238 12,918 62,683
2 .01123 .31174 6,044 29,329

4:
1 .01833 .26813 1,680 8,151
2 .04471 .35970 509 2,466

8:
1 .04145 .29822 407 1,972
2 .14020 .46479 87 419

.2:
2:

1 .02150 .34224 1,990 9,656
2 .03816 .42613 979 4,751

4:
1 .06022 .37004 297 1,439
2 .13382 .49563 108 523

8:
1 .12542 .41203 85 412
2 .32203 .58088 26 124

NOTE.—Data are as described in the footnotes to table 2, except
that rAB � 1.

when sib controls are used. This method generalizes both
the approach suggested by Spielman and Ewens (1998)
for two marker alleles and the approach suggested by
Boehnke and Langefeld (1998). One advantage of our
proposed statistic is that, for large sample sizes, it has
an approximately x2 distribution and so avoids the
longer time required by the methods given by Boehnke
and Langefeld (1998) for computation of simulated P
values. This time savings can be significant when one is
evaluating multiple marker loci, such as in a genomewide
screen. Limited simulations (not shown) have indicated
that, when sample size is large, the AC2 statistic and the
Ssib statistic have similar power and that the x2 distri-
bution is adequate for computation of P values for the
Ssib statistic. However, for small sample sizes, the as-
ymptotic x2 distribution may not be adequate, requiring

simulated P values; the permutation method that has
been given by Spielman and Ewens (1998) can be used
to compute simulated P values for Ssib. Although the
minimum sample size required for the x2 distribution to
be adequate is not known, guidelines for the validity of
the Mantel-Haenszel stratified x2 statistic may prove use-
ful (Mantel and Fleiss 1980).

Another advantage of our general approach is that the
ages of unaffected sibs can be accounted for in a refined
stratified analysis. This may be critical when one is eval-
uating complex diseases with late ages at onset, because
unaffected sibs could later develop the disease. This type
of analysis can be performed by further stratifying on
the age at onset of affected sibs, in much the same man-
ner as the log-rank statistic is used in survival analysis.
That is, for each affected sib, create a table, where2 # G
the sib controls are chosen such that the age at which
they are known to be free of disease is at least the age
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at which the affected sib is diagnosed. After this refined
stratification is setup, the approach outlined for sib con-
trols can be used to compute the multivariate score sta-
tistic. The conditional logistic-regression models that we
propose to account for nongenetic covariates may also
be critical, in order to adjust for differences in environ-
mental risk factors among sibs. Although the score sta-
tistic and conditional logistic regression are valid meth-
ods to test the null hypothesis of no association between
the genetic markers and affection status, a potential dif-
ficulty with conditional logistic regression is that the var-
iance estimates for the maximum-likelihood relative-risk
estimates may not be accurate when there are dependent
data, such as when multiple affected sibs and parental
controls are used or when residual sib correlation exists.
Further work, such as use of generalized estimating
equations, is needed to allow for this type of data.

A further advantage of our proposed approach is that
it is applicable to designs using parents as controls, sibs
as controls, unrelated controls whose genotypes do not
fit Hardy-Weinberg proportions, or any combination of
these different designs. However, if a family has both
parents and sib controls available, then only the parents
should be used. The benefit of this general approach is
that a multivariate x2 statistic can be used, which will
tend to be the most powerful method when multiple
marker alleles are associated with affection status. Al-
ternatively, the components of this statistic can be used
to compute the maximum of the univariate statistics,
Zmax, which will tend to be the most powerful method
when a single marker allele is associated with affection
status (Schaid 1996). If there is evidence that a candidate
gene will likely have a dominant or recessive effect, then
use of marker-genotype scores different from the allele-
counting vectors (i.e., allele-counting vector ′b �

) can result in greater power, especially for reces-(2,1,0)
sive effects (Schaid 1996).

The methods that have been presented for computa-
tion of sample size and power, using either sib controls
or parental controls, are general enough to allow one to
consider varying the sibship sizes, ascertainment criteria,
and genetic models of risk. Although we have presented
power calculations for only two marker alleles, it is pos-
sible to compute power for marker alleles, by useK 1 2
of the noncentral x2 distribution, with a noncentrality
parameter that depends on allele frequencies and ge-
notype relative risks. Because it can be difficult to specify
all the genotype relative risks in a plausible manner, a
simpler, conservative approach is to assume that only
one marker allele is positively associated with disease,
then modify the Za critical value to the Bonferonni cor-
rected value, , and then use this corrected valueZa/(K�1)

in the formulas for power that are presented in the ap-
pendices. If it is anticipated that a pooled analysis will
be required, because only sib controls will be available

for some families, and other families will have parental
controls, then the methods that have been presented for
computation of sample size and power for each of these
types of controls can be adapted to computation of sam-
ple size and power for a pooled analysis.

The results indicate that parental controls offer greater
power than sib controls, for both dominant and recessive
effects, which agrees with the findings by Spielman and
Ewens (1998). The power of sib controls can be in-
creased by either increasing the number of affected sibs
per sibship or increasing the number of unaffected con-
trol sibs, with the former offering the greatest gain. The
power gain produced by increasing the number of un-
affected sibs follows the pattern of relative efficiency for
matched case-control studies; for one affected subject
matched with M unaffected subjects, the relative effi-
ciency, (Ury 1975), suggests little gain inM/(M � 1)
power when the number of unaffected controls per each
affected subject exceeds four.

The sample-size results suggest that the use of sib con-
trols to test for associations, by either a single-marker-
locus test or a genomewide screen, will be feasible either
for markers that have a dominant effect and for common
alleles that have a recessive effect. Although we have
assumed that the lifetime risk of disease is 5%, the sam-
ple sizes presented in tables 2 and 3 are only 2%–22%
larger than those required when the lifetime risk is 10%.
Hence, the results in tables 2 and 3 can be useful guide-
lines for investigators planning studies using sibs as
controls.
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Appendix A

Power Calculations for Sib Controls

To illustrate computation of power for sib controls,
denote the number of affected sibs with genotypes AA,
AB, and BB as x1, x2, and x3, respectively, with the vector

; analogous counts for unaffected sibs arex � (x ,x ,x )g 1 2 3

denoted as y1, y2, and y3, respectively, with vector y �g

. The total number of affected sibs in a sibship(y ,y ,y )1 2 3

is Nd, the total number of unaffected sibs is Nc, and N
� Nd � Nc. The possible values of xi and yi are illustrated
in table A1 for each of the six parental mating types.
Note that sibships are not informative for associations
when all offspring have the same genotype, as is the case
with mating types 1, 3, and 6.
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Table A1

Parental Mating Types and Possible Sib Genotype Counts, with
Mendelian Genotype Probabilities

PARENTAL

MATING TYPE

POSSIBLE VALUE OF SIB

GENOTYPE COUNTSa

AA AB BB

1. AA # AA Nd 0 0
Nc 0 0
(1) (0) (0)

2. AA # AB dx � 0,...,N1
dx � N � x2 1 0

cy � 0,...,N1
cy � N � y2 1 0

( )1
2 ( )1

2 (0)

3. AA # BB 0 Nd 0
0 Nc 0

(0) (1) (0)
4. AB # AB dx � 0,...,N1

dx � 0,...,N � x2 1
dx � N � x � x3 1 2

cy � 0,...,N1
cy � 0,...,N � y2 1

cy � N � y � y3 1 2

( )1
4 ( )1

2 ( )1
4

5. AB # BB 0 dx � 0,...,N2
dx � N � x3 2

0 cy � 0,...,N2
cy � N � y3 2

(0) ( )1
2 ( )1

2

6. BB # BB 0 0 Nd

0 0 Nc

(0) (0) (1)

a Values in parentheses are Mendelian genotype probabilities.

Conditional on the mating type, the probabilities of
the offspring’s genotypes are given by Mendelian seg-
regation probabilities, denoted as p1, p2, and p3 for geno-
types AA, AB, and BB, respectively; these probabilities
are also illustrated in table A1. Furthermore, conditional
on a mating type but not on the ascertainment criteria,
the joint probability of the offspring’s affection status
and genotypes in a particular table, say the jth table,
denoted as Tj, is

3
N x yi iP(TFm) � � (p f ) [p (1 � f )] . (A1)j i i i i( )x x x y y y i�11 2 3 1 2 3

Now, conditional on the ascertainment criteria but not
on parental mating types, the probability of table Tj is

P(TFm)P(m)jP(T) � , (A2)j � P(TFm)P(m)s
T �Ss

where P(m) is the probability of mating type m, deter-
mined by Hardy-Weinberg proportions and allele fre-
quencies, and the sum in the denominator is over the
set S of all possible tables that are consistent with2 # 3
the ascertainment scheme. For example, the sum in the
denominator of expression (A2) would equal 1 if Nd

were allowed to vary from 0 to N. However, sibships

with no affected sibs are not informative, so, in practice,
Nd will be x1. For particular values of anddN � i

, the number of tables to enumeratecN � N � i 2 # 3
is M � 3 � 2(i � 1)(N � i � 1) � (i � 1)(i � 2)(N � i �i

. So, the total number of tables in the set1)(N � i � 2)/4
S, M, is the sum of the values of Mi over the range of
values of Nd that are consistent with the ascertainment
scheme.

Now, the difference between the observed count of A
alleles among cases and that predicted by the marginal
genotype distribution among N sibs, the difference de-
noted as d, is the random variable of interest, and its
mean and variance will determine power. To determine
these moments, collect the first row (i.e., xg counts for
cases) from all M tables and bind these into the M #

matrix X. A matrix Y is similarly created for the yg3
counts for controls from all tables. The marginal ge-
notype counts of the tables is the matrix .T � X � Y
The random variable d can be computed for all M tables
by means of the matrix notation ,dd � (X � TN /N)b
where b′ is the vector (2,1,0). The expected value of d

under the alternative hypothesis is ,m � S d P(T)alt T �S j j altj

where P(Tj)alt is computed on the basis of expressions
(A1) and (A2), with fi values that depend on the genotype
relative risks specified by the alternative hypothesis. Un-
der the null hypothesis, . The variance of d underm � 0nul

the alternative hypothesis is

2 2j � (d � m ) P(T) . (A3)�alt i alt j alt
T �Sj

The variance of d under the null hypothesis, , can be2jnul

calculated on the basis of expression (A3) but with sub-
stitution of for malt and of P(Tj)nul for P(Tj)alt,m � 0nul

where P(Tj)nul is computed with all fi values equal, as
under the null hypothesis. Sibships that are not infor-
mative, because all sibs have the same genotype, have

and hence reduce power by reduction of the ef-d � 0
fective sample size. Power or sample size (no. of sibships,
Ns) can be determined by solving the following expres-
sion for either Zb or Ns, respectively,

�N Fm F � Z j � Z j , (A4)s alt a nul b alt

where Za and Zb are the th and th per-(1 � a) (1 � b)
centiles of a standard normal distribution, giving type I
error of a and power of . However, the accuracy1 � b

of this asymptotic method depends on having a large
amount of statistical information, and the magnitude of
statistical information decreases with decreasing allele
frequencies and marker-genotype relative risks. Simu-
lations (not shown) have indicated that expression (A4)
overestimates power when jnul dramatically differs from
jalt, which occurs when marker alleles are rare. A closer
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approximation, which slightly underestimates power, is
given when jnul is replaced by jalt in expression (A4),
which results in

�N Fm F � (Z � Z )j . (A5)s alt a b alt

The power computations given above apply when the
number of sibs within a sibship, N, is constant. Since N
will likely vary, the anticipated distribution of N can be
used to more accurately estimate power or sample size.
For example, the distribution of N could be estimated
by either pilot data or an assumed negative binomial
distribution (Cavalli-Sforza and Bodmer 1971, p. 313).
With this distribution assumed, the values of malt and jalt

in expression (A5) can be replaced with weighted av-
erages, in which each of these parameters is computed
for each value of N and the results are combined by use
of the probabilities of the different values of N as
weights.

Appendix B

Power Calculations for Parental Controls

When there are two marker alleles, the TDT statistic
can be used for parental controls. For this, one needs to
count the total number of times that heterozygous par-
ents transmit the A allele, denoted “nA,” and the total
number of times that heterozygous parents transmit the
B allele, denoted “nB.” The total number of informative
transmissions is . The TDT statistic can ben � n � nT A B

written as

2 2ˆ(n � n ) (p � .5)A BTDT � � ,
n � n 1/4nA B T

where , the estimated frequency of transmis-p̂ � n /nA T

sion of an A allele from a heterozygous parent to an
affected child. To compute sample size and power, we
need to determine the expected values of nA and nT for
a given alternative hypothesis and sampling scheme.

First consider computing the expected value of nT,
denoted “E[nT].” For the six mating types in table A1,
only the three with at least one heterozygous parent (i.e.,
mating types 2, 4, and 5) are informative for determi-
nation of transmission status of alleles. Because mating
types 2 and 5 have only one heterozygous parent, Nd

affected sibs from each of these mating types contribute
a count of Nd to the value of NT, and, because mating
type 4 has two heterozygous parents, Nd affected sibs
from this mating type contribute a count of 2Nd to the
value of nT. So the expected value of nT is

d d dE[n ] � P(T)N � P(T)2N � P(T)N , (B1)� � �T j i j i j i
j�S j�S j�S2 4 5

where Sm is the set of tables that originate from2 # 3
mating type m.

The expected value of nA, the number of times that A
is preferentially transmitted over B, can be determined
by calculation of the number of A transmissions, as fol-
lows. Let xji denote the number of affected sibs from
table Tj who are in the ith genotype category (i �

for genotypes AA, AB, and BB, respectively). For1,2,3
tables that originate from mating type 2, the number of
A transmissions is xj1; from mating type 4, ( );2x � xj1 j2

from mating type 5, xj2. So the expected value of nA can
be represented as

E[n ] � P(T)x � P(T)[2x � x ]� �A j ji j j1 j2
j�S j�S2 4

� P(T)x , (B2)� j j2
j�S5

where P(Tj) is given by expression (A2) and each of the
summations is restricted to the indicated set of tables Sm

that originate from mating type m. Using expressions
(B1) and (B2), we can calculate and,p � E[n ]/E[n ]A T

consequently, can determine power or sample size (Ns �
no. of sibships), by solving for Zb or Ns in the expression

� � �N E[n ] Fp � .5F � Z /2 � Z p(1 � p) .s T a b

If the size of the sibship varies, then E[nA] and E[nT]
should be computed for each different sibship size and
then averaged, much as in the method described for sib
controls.

Appendix C

Power Calculations for Unrelated Controls

When unrelated controls are sampled, the probability
of genotype g among the controls is P(gFc) � [(1 �

, which can be enumerated, forf )P(g)]/S (1 � f )P(g)g g g

all genotypes, in the vector ′p � [P(AA d c),P (AB dc

. For the affected cases, the probability ofc),P (BB d c)]
genotype g is , enumerated in theP(gFd) � f P(g)/S f P(g)g g g

vector .′p � [P(AA d d),P(AB d d),P(BB d d)]d

For the table of genotype counts, the expected2 # 3
marginal distribution of genotypes is p � (p �t d

, where Rc denotes the ratio of the numberp R )/(R � 1)c c c

of controls to the number of cases. The difference be-
tween the number of A alleles among cases that are
expected to occur under a specified hypothesis and the
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number that is predicted by the marginal genotype dis-
tribution is . Under the null hypoth-d ′m � N b (p � p )alt d t

esis, , but, as the genotype relative risks deviatem � 0
from 1, malt deviates from 0. Under the alternative hy-
pothesis, the covariance matrix of genotype counts
among cases is approximated by

d ′ c cV � N [diag(p ) � p p ]R /(R � 1) . (C1)alt t t t

So the variance of the number of A alleles among cases
is . The variance under the null hypothesis,2 ′j � b V balt alt

, can be computed by substitution of the vector of2jnul

genotype probabilities determined by Hardy-Weinberg
proportions, pg, for the vector pt in expression (C1). On
the basis of these results, power or sample size (Nd �
no. of cases) can be calculated by solving the following
expression for either Zb or Nd, respectively,

d�N Fm F � Z j � Z j . (C2)alt a nul b alt

Then the total sample size is . Similar to thed cN (1 � R )
asymptotic accuracy regarding sib controls in expression
(A4), simulations (not shown) indicate that a more ac-
curate method than that of expression (C2), albeit con-
servative, is to use the following expression to determine
sample size and power: .d�N Fm F � (Z � Z )jalt a b alt
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